3.1254 \(\int (B \cos (c+d x)+C \cos ^2(c+d x)) \sec ^{\frac{7}{2}}(c+d x) \, dx\)

Optimal. Leaf size=123 \[ \frac{2 B \sin (c+d x) \sec ^{\frac{3}{2}}(c+d x)}{3 d}+\frac{2 B \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{2 C \sin (c+d x) \sqrt{\sec (c+d x)}}{d}-\frac{2 C \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d} \]

[Out]

(-2*C*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (2*B*Sqrt[Cos[c + d*x]]*EllipticF[(
c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (2*C*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/d + (2*B*Sec[c + d*x]^(3/2)*S
in[c + d*x])/(3*d)

________________________________________________________________________________________

Rubi [A]  time = 0.122203, antiderivative size = 123, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 30, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {4221, 3010, 2748, 2636, 2641, 2639} \[ \frac{2 B \sin (c+d x) \sec ^{\frac{3}{2}}(c+d x)}{3 d}+\frac{2 B \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{2 C \sin (c+d x) \sqrt{\sec (c+d x)}}{d}-\frac{2 C \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[(B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^(7/2),x]

[Out]

(-2*C*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (2*B*Sqrt[Cos[c + d*x]]*EllipticF[(
c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (2*C*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/d + (2*B*Sec[c + d*x]^(3/2)*S
in[c + d*x])/(3*d)

Rule 4221

Int[(u_)*((c_.)*sec[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Sec[a + b*x])^m*(c*Cos[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Cos[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rule 3010

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x
_Symbol] :> Dist[1/b, Int[(b*Sin[e + f*x])^(m + 1)*(B + C*Sin[e + f*x]), x], x] /; FreeQ[{b, e, f, B, C, m}, x
]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2636

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1))/(b*d*(n +
1)), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^{\frac{7}{2}}(c+d x) \, dx &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac{7}{2}}(c+d x)} \, dx\\ &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{B+C \cos (c+d x)}{\cos ^{\frac{5}{2}}(c+d x)} \, dx\\ &=\left (B \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\cos ^{\frac{5}{2}}(c+d x)} \, dx+\left (C \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\cos ^{\frac{3}{2}}(c+d x)} \, dx\\ &=\frac{2 C \sqrt{\sec (c+d x)} \sin (c+d x)}{d}+\frac{2 B \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac{1}{3} \left (B \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx-\left (C \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx\\ &=-\frac{2 C \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{d}+\frac{2 B \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{3 d}+\frac{2 C \sqrt{\sec (c+d x)} \sin (c+d x)}{d}+\frac{2 B \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 d}\\ \end{align*}

Mathematica [A]  time = 0.22534, size = 85, normalized size = 0.69 \[ \frac{\sec ^{\frac{3}{2}}(c+d x) \left (2 \sin (c+d x) (B+3 C \cos (c+d x))+2 B \cos ^{\frac{3}{2}}(c+d x) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )-6 C \cos ^{\frac{3}{2}}(c+d x) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )\right )}{3 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^(7/2),x]

[Out]

(Sec[c + d*x]^(3/2)*(-6*C*Cos[c + d*x]^(3/2)*EllipticE[(c + d*x)/2, 2] + 2*B*Cos[c + d*x]^(3/2)*EllipticF[(c +
 d*x)/2, 2] + 2*(B + 3*C*Cos[c + d*x])*Sin[c + d*x]))/(3*d)

________________________________________________________________________________________

Maple [B]  time = 2.335, size = 397, normalized size = 3.2 \begin{align*}{\frac{2}{3\,d}\sqrt{- \left ( -2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1 \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( 2\,B\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+6\,C\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-12\,C \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}\cos \left ( 1/2\,dx+c/2 \right ) -B\sqrt{ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticF} \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) ,\sqrt{2} \right ) +2\,B\cos \left ( 1/2\,dx+c/2 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-3\,C\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) +6\,C \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}\cos \left ( 1/2\,dx+c/2 \right ) \right ) \sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( 4\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}-4\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1 \right ) ^{-1} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-3}{\frac{1}{\sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^(7/2),x)

[Out]

2/3*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)/(4*sin(1/2*d*x+1/2*c)^4-4*sin(1/2*d*x+1/2*c)^2+1
)/sin(1/2*d*x+1/2*c)^3*(2*B*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*
x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2+6*C*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*Ellip
ticE(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2-12*C*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)-B*(sin(1/2*
d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+2*B*cos(1/2*d*x+1/2
*c)*sin(1/2*d*x+1/2*c)^2-3*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d
*x+1/2*c),2^(1/2))+6*C*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)
^(1/2)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right )\right )} \sec \left (d x + c\right )^{\frac{7}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^(7/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c))*sec(d*x + c)^(7/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right )\right )} \sec \left (d x + c\right )^{\frac{7}{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^(7/2),x, algorithm="fricas")

[Out]

integral((C*cos(d*x + c)^2 + B*cos(d*x + c))*sec(d*x + c)^(7/2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c)**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right )\right )} \sec \left (d x + c\right )^{\frac{7}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^(7/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c))*sec(d*x + c)^(7/2), x)